skip to main content


Search for: All records

Creators/Authors contains: "LaViolette, Aaron K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Measurements of three-photon action cross-sections for fluorescein (dissolved in water, pH ∼11.5) are presented in the excitation wavelength range from 1154 to 1500 nm in ∼50 nm steps. The excitation source is a femtosecond wavelength tunable non-collinear optical parametric amplifier, which has been spectrally filtered with 50 nm full width at half maximum band pass filters. Cube-law power dependance is confirmed at the measurement wavelengths. The three-photon excitation spectrum is found to differ from both the one- and two-photon excitation spectra. The three-photon action cross-section at 1154 nm is more than an order of magnitude larger than those at 1450 and 1500 nm (approximately three times the wavelength of the one-photon excitation peak), which possibly indicates the presence of resonance enhancement.

     
    more » « less
  2. Much of fluorescence-based microscopy involves detection of if an object is present or absent (i.e., binary detection). The imaging depth of three-dimensionally resolved imaging, such as multiphoton imaging, is fundamentally limited by out-of-focus background fluorescence, which when compared to the in-focus fluorescence makes detecting objects in the presence of noise difficult. Here, we use detection theory to present a statistical framework and metric to quantify the quality of an image when binary detection is of interest. Our treatment does not require acquired or reference images, and thus allows for a theoretical comparison of different imaging modalities and systems.

     
    more » « less
  3. Abstract The last decade has seen the development of a wide set of tools, such as wavefront shaping, computational or fundamental methods, that allow us to understand and control light propagation in a complex medium, such as biological tissues or multimode fibers. A vibrant and diverse community is now working in this field, which has revolutionized the prospect of diffraction-limited imaging at depth in tissues. This roadmap highlights several key aspects of this fast developing field, and some of the challenges and opportunities ahead. 
    more » « less